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The Fourier Transform
�
�

�
�24.1

Introduction
Fourier transforms have for a long time been a basic tool of applied mathematics, particularly for
solving differential equations (especially partial differential equations) and also in conjunction with
integral equations.

There are really three Fourier transforms, the Fourier Sine and Fourier Cosine transforms and a
complex form which is usually referred to as the Fourier transform.

The last of these transforms in particular has extensive applications in Science and Engineering, for
example in physical optics, chemistry (e.g. in connection with Nuclear Magnetic Resonance and
Crystallography), Electronic Communications Theory and more general Linear Systems Theory.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be familiar with basic Fourier series,
particularly in the complex form

'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• calculate simple Fourier transforms from the
definition

• state how the Fourier transform of a function
(signal) depends on whether that function is
even or odd or neither
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1. The Fourier transform
Unlike Fourier series, which are mainly useful for periodic functions, the Fourier transform permits
alternative representations of mostly non-periodic functions.

We shall firstly derive the Fourier transform from the complex exponential form of the Fourier series
and then study its various properties.

2. Informal derivation of the Fourier transform
Recall that if f(t) is a period T function, which we will temporarily re-write as fT (t) for emphasis,
then we can expand it in a complex Fourier series,

fT (t) =
∞∑

n=−∞

cne
inω0t (1)

where ω0 =
2π

T
. In words, harmonics of frequency nω0 = n

2π

T
n = 0,±1,±2, . . . are present in

the series and these frequencies are separated by

nω0 − (n− 1)ω0 = ω0 =
2π

T
.

Hence, as T increases the frequency separation becomes smaller and can be conveniently written as
∆ω. This suggests that as T → ∞, corresponding to a non-periodic function, then ∆ω → 0 and
the frequency representation contains all frequency harmonics.

To see this in a little more detail, we recall ( 23: Fourier series) that the complex Fourier
coefficients cn are given by

cn =
1

T

∫ T
2

−T
2

fT (t)e−inω0t dt. (2)

Putting
1

T
as

ω0

2π
and then substituting (2) in (1) we get

fT (t) =
∞∑

n=−∞

{
ω0

2π

∫ T
2

−T
2

fT (t)e−inω0t dt

}
einω0t.

In view of the discussion above, as T → ∞ we can put ω0 as ∆ω and replace the sum over the
discrete frequencies nω0 by an integral over all frequencies. We replace nω0 by a general frequency
variable ω. We then obtain the double integral representation

f(t) =

∫ ∞

−∞

{
1

2π

∫ ∞

−∞
f(t)e−iωt dt

}
eiωt dω. (3)

The inner integral (over all t) will give a function dependent only on ω which we write as F (ω).
Then (3) can be written

f(t) =
1

2π

∫ ∞

−∞
F (ω)eiωt dω (4)

where
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F (ω) =

∫ ∞

−∞
f(t)e−iωt dt. (5)

The representation (4) of f(t) which involves all frequencies ω can be considered as the equivalent
for a non-periodic function of the complex Fourier series representation (1) of a periodic function.

The expression (5) for F (ω) is analogous to the relation (2) for the Fourier coefficients cn.

The function F (ω) is called the Fourier transform of the function f(t). Symbolically we can write

F (ω) = F{f(t)}.

Equation (4) enables us, in principle, to write f(t) in terms of F (ω). f(t) is often called the inverse
Fourier transform of F (ω) and we denote this by writing

f(t) = F−1{F (ω)}.

Looking at the basic relation (3) it is clear that the position of the factor
1

2π
is somewhat arbitrary

in (4) and (5). If instead of (5) we define

F (ω) =
1

2π

∫ ∞

−∞
f(t)e−iωt dt.

then (4) must be written

f(t) =

∫ ∞

−∞
F (ω)eiωt dω.

A third, more symmetric, alternative is to write

F (ω) =
1√
2π

∫ ∞

−∞
f(t)e−iωt dt

and, consequently:

f(t) =
1√
2π

∫ ∞

−∞
F (ω)eiωt dω.

We shall use (4) and (5) throughout this Section but you should be aware of these other possibilities
which might be used in other texts.

Engineers often refer to F (ω) (whichever precise definition is used!) as the frequency domain
representation of a function or signal and f(t) as the time domain representation. In what follows
we shall use this language where appropriate. However, (5) is really a mathematical transformation for
obtaining one function from another and (4) is then the inverse transformation for recovering the initial
function. In some applications of Fourier transforms (which we shall not study) the time/frequency
interpretations are not relevant. However, in engineering applications, such as communications theory,
the frequency representation is often used very literally.

As can be seen above, notationally we will use capital letters to denote Fourier transforms: thus a
function f(t) has a Fourier transform denoted by F (ω), g(t) has a Fourier transform written G(ω)
and so on. The notation F (iω), G(iω) is used in some texts because ω occurs in (5) only in the
term e−iωt.
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3. Existence of the Fourier transform
We will discuss this question in a little detail at a later stage when we will also consider briefly the
relation between the Fourier transform and the Laplace Transform ( 20). For now we will use
(5) to obtain the Fourier transforms of some important functions.

Example 1
Find the Fourier transform of the one-sided exponential function

f(t) =

{
0 t < 0

e−αt t > 0

where α is a positive constant, shown below:

f(t)

t

Figure 1

Solution

Using (5) then by straightforward integration

F (ω) =

∫ ∞

0

e−αte−iωt dt (since f(t) = 0 for t < 0)

=

∫ ∞

0

e−(α+iωt) dt

=

[
e−(α+iω)t

−(α + iω)

]∞
0

=
1

α + iω

since e−αt → 0 as t →∞ for α > 0.

This important Fourier transform is written in the following Key Point:
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Key Point 1

F{e−αtu(t)} =
1

α + iω
, α > 0.

Note that this real function has a complex Fourier transform.

Note that if u(t) is used to denote the Heaviside unit step function:

u(t) =

{
0 t < 0
1 t > 0

then we can write the function in Example 1 as: f(t) = e−αtu(t). We shall frequently use this
concise notation for one-sided functions.

Task

Write down the Fourier transforms of

(a) e−tu(t) (b) e−3tu(t) (c) e−
t
2 u(t)

Use Key Point 1:

Your solution

(a)

(b)

(c)

Answer

(a) α = 1 so F{e−tu(t)} =
1

1 + iω

(b) α = 3 so F{e−3tu(t)} =
1

3 + iω

(c) α = 1
2

so F{e− t
2 u(t)} =

1
1
2

+ iω
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Task

Obtain, using the integral definition (5), the Fourier transform of the rectangular
pulse

p(t) =

{
1 −a < t < a
0 otherwise

.

Note that the pulse width is 2a as indicated in the diagram below.

t−a a

1

p(t)

First use (5) to write down the integral from which the transform will be calculated:

Your solution

Answer

P (ω) ≡ F{p(t)} =

∫ a

−a

(1)e−iωt dt using the definition of p(t)

Now evaluate this integral and write down the final Fourier transform in trigonometric, rather than
complex exponential form:

Your solution

Answer

P (ω) =

∫ a

−a

(1)e−iωt dt =

[
e−iωt

(−iω)

]a

−a

=
e−iωa − e+iωa

(−iω)

=
(cos ωa− i sin ωa)− (cos ωa + i sin ωa)

(−iω)
=

2i sin ωa

iω

i.e.

P (ω) = F{p(t)} =
2 sin ωa

ω
(6)

Note that in this case the Fourier transform is wholly real.
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Engineers often call the function
sin x

x
the sinc function. Consequently if we write, the transform

(6) of the rectangular pulse as

P (ω) = 2a
sin ωa

ωa
,

we can say

P (ω) = 2a sinc(ωa).

Using the result (6) in (4) we have the Fourier integral representation of the rectangular pulse.

p(t) =
1

2π

∫ ∞

−∞
2
sin ωa

ω
eiωt dω.

As we have already mentioned, this corresponds to a Fourier series representation for a periodic
function.

Key Point 2

The Fourier transform of a Rectangular Pulse

If pa(t) =

{
1 −a < t < a
0 otherwise

then:

F{pa(t)} = 2a
sin ωa

ωa
= 2a sinc(ωa)

Clearly, if the rectangular pulse has width 2, corresponding to a = 1 we have:

P1(ω) ≡ F{p1(t)} = 2
sin ω

ω
.

As ω → 0, then 2
sin ω

ω
→ 2. Also, the function 2

sin ω

ω
is an even function being the product of two

odd functions 2 sin ω and
1

ω
. The graph of P1(ω) is as follows:

P1(ω)

ω
−π π

2

Figure 2
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Task

Obtain the Fourier transform of the two sided exponential function

f(t) =

{
eαt t < 0
e−αt t > 0

where α is a positive constant.

f(t)

t

1

Your solution

Answer
We must separate the range of the integrand into [−∞, 0] and [0,∞] since the function f(t) is
defined separately in these two regions: then

F (ω) =

∫ 0

−∞
eαte−iωt dt +

∫ ∞

0

e−αte−iωt dt =

∫ 0

−∞
e(α−iω)t dt +

∫ ∞

0

e−(α+iω)t dt

=

[
e(α−iω)t

(α− iω)

]0

−∞
+

[
e−(α+iω)t

−(α + iω)

]∞
0

=
1

α− iω
+

1

α + iω
=

2α

α2 + ω2
.
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Note that, as in the case of the rectangular pulse, we have here a real even function of t giving a
Fourier transform which is wholly real. Also, in both cases, the Fourier transform is an even (as well
as real) function of ω.

Note also that it follows from the above calculation that

F{e−αtu(t)} =
1

α + iω
(as we have already found)

and

F{eαtu(−t)} =
1

α− iω
where eαtu(−t) =

{
eαt t < 0
0 t > 0

.

4. Basic properties of the Fourier transform

Real and imaginary parts of a Fourier transform
Using the definition (5) we have,

F (ω) =

∫ ∞

−∞
f(t)e−iωt dt.

If we write e−iωt = cos ωt− i sin ωt, then

F (ω) =

∫ ∞

−∞
f(t) cos ωt dt− i

∫ ∞

−∞
f(t) sin ωt dt

where both integrals are real, assuming that f(t) is real. Hence the real and imaginary parts of the
Fourier transform are:

Re (F (ω)) =

∫ ∞

−∞
f(t) cos ωt dt Im (F (ω)) = −

∫ ∞

−∞
f(t) sin ωt dt.

Task

Recalling that if h(t) is even and g(t) is odd then

∫ a

−a

h(t) dt = 2

∫ a

0

h(t) dt and∫ a

−a

g(t) dt = 0, deduce Re(F (ω)) and Im(F (ω)) if

(a) f(t) is a real even function

(b) f(t) is a real odd function.

Your solution

(a)

10 HELM (2008):
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Answer
If f(t) is real and even

R(ω) ≡ Re F (ω) = 2

∫ ∞

0

f(t) cos ωt dt (because the integrand is even)

I(ω) ≡ Im F (ω) = −
∫ ∞

−∞
f(t) sin ωt dt = 0 (because the integrand is odd).

Thus, any real even function f(t) has a wholly real Fourier transform. Also since

cos((−ω)t) = cos(−ωt) = cos ωt

the Fourier transform in this case will be a real even function.

Your solution

(b)

Answer
Now

Re F (ω) =

∫ ∞

−∞
f(t) cos ωt dt =

∫ ∞

−∞
(odd)× (even) dt =

∫ ∞

−∞
(odd) dt = 0

and

Im F (ω) = −
∫ ∞

−∞
f(t) sin ωt dt = −2

∫ ∞

0

f(t) sin ωt dt

(because the integrand is (odd)×(odd)=(even)).

Also since sin((−ω)t) = − sin ωt, the Fourier transform in this case is an odd function of ω.

These results are summarised in the following Key Point:
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Key Point 3

f(t) F (ω) = F{f(t)}

, F (ω) = R(ω) + iI(ω)

real and even
real and odd

neither even nor odd
purely imaginary and odd
complex

real and even

Polar form of a Fourier transform

Task

The one-sided exponential function f(t) = e−αtu(t) has Fourier transform

F (ω) =
1

α + iω
. Find the real and imaginary parts of F (ω).

Your solution

Answer

F (ω) =
1

α + iω
=

α− iω

α2 + ω2
.

Hence R(ω) = Re F (ω) =
α

α2 + ω2
I(ω) = Im F (ω) =

−ω

α2 + ω2

We can rewrite F (ω), like any other complex quantity, in polar form by calculating the magnitude
and the argument (or phase). For the Fourier transform in the last Task

|F (ω)| =
√

R2(ω) + I2(ω) =

√
α2 + ω2

(α2 + ω2)2
=

1√
α2 + ω2

and arg F (ω) = tan−1 I(ω)

R(ω)
= tan−1

(
−ω

α

)
.
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|F (ω)|

ω

argF (ω)

ω

π/2

−π/2

1
α

Figure 3

In general, a Fourier transform whose Cartesian form is F (ω) = R(ω) + iI(ω) has a polar form
F (ω) = |F (ω)|eiφ(ω) where φ(ω) ≡ arg F (ω).

Graphs, such as those shown in Figure 3, of |F (ω)| and arg F (ω) plotted against ω, are often referred
to as magnitude spectra and phase spectra, respectively.

Exercises

1. Obtain the Fourier transform of the rectangular pulses

(a) f(t) =

{
1 |t| ≤ 1
0 |t| > 1

(b) f(t) =


1

4
|t| ≤ 3

0 |t| > 3

2. Find the Fourier transform of

f(t) =



1− t

2
0 ≤ t ≤ 2

1 +
t

2
−2 ≤ t ≤ 0

0 |t| > 2

Answers

1.(a) F (ω) =
2

ω
sin ω

(b) F (ω) =
sin 3ω

2ω

2.
1− cos 2ω

ω2
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Properties of the
Fourier Transform

�
�

�
�24.2

Introduction
In this Section we shall learn about some useful properties of the Fourier transform which enable
us to calculate easily further transforms of functions and also in applications such as electronic
communication theory.

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be aware of the basic definitions of the
Fourier transform and inverse Fourier
transform'

&

$

%
Learning Outcomes

On completion you should be able to . . .

• state and use the linearity property and the
time and frequency shift properties of Fourier
transforms

• state various other properties of the Fourier
transform
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1. Linearity properties of the Fourier transform
(i) If f(t), g(t) are functions with transforms F (ω), G(ω) respectively, then

• F{f(t) + g(t)} = F (ω) + G(ω)

i.e. if we add 2 functions then the Fourier transform of the resulting function is simply the sum of
the individual Fourier transforms.

(ii) If k is any constant,

• F{kf(t)} = kF (ω)

i.e. if we multiply a function by any constant then we must multiply the Fourier transform by the
same constant. These properties follow from the definition of the Fourier transform and from the
properties of integrals.

Examples

1.

F{2e−tu(t) + 3e−2tu(t)} = F{2e−tu(t)}+ F{3e−2tu(t)}

= 2F{e−tu(t)}+ 3F{e−2tu(t)}

=
2

1 + iω
+

3

2 + iω

2.

If f(t) =

{
4 −3 ≤ t ≤ 3
0 otherwise

then f(t) = 4p3(t)

so F (ω) = 4P3(ω) =
8

ω
sin 3ω

using the standard result for F{pa(t)}.

Task

If f(t) =

{
6 −2 ≤ t ≤ 2
0 otherwise

write down F (ω).

Your solution

Answer

We have f(t) = 6p2(t) so F (ω) =
12

ω
sin 2ω.
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2. Shift properties of the Fourier transform
There are two basic shift properties of the Fourier transform:

(i) Time shift property: • F{f(t− t0)} = e−iωt0F (ω)

(ii) Frequency shift property • F{eiω0tf(t)} = F (ω − ω0).

Here t0, ω0 are constants.

In words, shifting (or translating) a function in one domain corresponds to a multiplication by a
complex exponential function in the other domain.

We omit the proofs of these properties which follow from the definition of the Fourier transform.

Example 2
Use the time-shifting property to find the Fourier transform of the function

g(t) =

{
1 3 ≤ t ≤ 5
0 otherwise

t

g(t)

1

3 5

Figure 4

Solution

g(t) is a pulse of width 2 and can be obtained by shifting the symmetrical rectangular pulse

p1(t) =

{
1 −1 ≤ t ≤ 1
0 otherwise

by 4 units to the right.

Hence by putting t0 = 4 in the time shift theorem

G(ω) = F{g(t)} = e−4iω 2

ω
sin ω.

16 HELM (2008):
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Task

Verify the result of Example 2 by direct integration.

Your solution

Answer

G(ω) =

∫ 5

3

1e−iωtdt =

[
e−iωt

−iω

]5

3

=
e−5iω − e−3iω

−iω
= e−4iω

(
eiω − e−iω

iω

)
= e−4iω2

sin ω

ω
,

as obtained using the time-shift property.

Task

Use the frequency shift property to obtain the Fourier transform of the
modulated wave

g(t) = f(t) cos ω0t

where f(t) is an arbitrary signal whose Fourier transform is F (ω).

First rewrite g(t) in terms of complex exponentials:

Your solution

Answer

g(t) = f(t)

(
eiω0t + e−iω0t

2

)
=

1

2
f(t)eiω0t +

1

2
f(t)e−iω0t

HELM (2008):
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Now use the linearity property and the frequency shift property on each term to obtain G(ω):

Your solution

Answer
We have, by linearity:

F{g(t)} =
1

2
F{f(t)eiω0t}+

1

2
F{f(t)e−iω0t}

and by the frequency shift property:

G(ω) =
1

2
F (ω − ω0) +

1

2
F (ω + ω0).

F (ω)

1
1
2

−ω0 ω0
ω

G(ω)

ω

3. Inversion of the Fourier transform
Formal inversion of the Fourier transform, i.e. finding f(t) for a given F (ω), is sometimes possible
using the inversion integral (4). However, in elementary cases, we can use a Table of standard Fourier
transforms together, if necessary, with the appropriate properties of the Fourier transform.

The following Examples and Tasks involve such inversion.
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Example 3
Find the inverse Fourier transform of F (ω) = 20

sin 5ω

5ω
.

Solution

The appearance of the sine function implies that f(t) is a symmetric rectangular pulse.

We know the standard form F{pa(t)} = 2a
sin ωa

ωa
or F−1{2asin ωa

ωa
} = pa(t).

Putting a = 5 F−1{10
sin 5ω

5ω
} = p5(t). Thus, by the linearity property

f(t) = F−1{20
sin 5ω

5ω
} = 2p5(t)

f(t)
2

−5 5 t

Figure 4

Example 4
Find the inverse Fourier transform of G(ω) = 20

sin 5ω

5ω
exp (−3iω).

Solution

The occurrence of the complex exponential factor in the Fourier transform suggests the time-shift
property with the time shift t0 = +3 (i.e. a right shift).

From Example 3

F−1{20
sin 5ω

5ω
} = 2p5(t) so g(t) = F−1{20

sin 5ω

5ω
e−3iω} = 2p5(t− 3)

2

t

g(t)

−2 8

Figure 5
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Task

Find the inverse Fourier transform of

H(ω) = 6
sin 2ω

ω
e−4iω.

Firstly ignore the exponential factor and find the inverse Fourier transform of the remaining terms:

Your solution

Answer

We use the result: F−1{2asin ωa

ωa
} = pa(t)

Putting a = 2 gives F−1{2sin 2ω

ω
} = p2(t) ∴ F−1{6sin 2ω

ω
} = 3p2(t)

Now take account of the exponential factor:

Your solution

Answer
Using the time-shift theorem for t0 = 4

h(t) = F−1{6sin 2ω

ω
e−4iω} = 3p2(t− 4)

t

h(t)
3

2 6
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Example 5
Find the inverse Fourier transform of

K(ω) =
2

1 + 2(ω − 1)i

Solution

The presence of the term (ω − 1) instead of ω suggests the frequency shift property.

Hence, we consider first

K̂(ω) =
2

1 + 2iω
.

The relevant standard form is

F{e−αtu(t)} =
1

α + iω
or F−1{ 1

α + iω
} = e−αtu(t).

Hence, writing K̂(ω) =
1

1
2

+ iω
k̂(t) = e−

1
2
tu(t).

Then, by the frequency shift property with ω0 = 1 k(t) = F−1{ 2

1 + 2(ω − 1)i
} = e−

1
2
teitu(t).

Here k(t) is a complex time-domain signal.

Task

Find the inverse Fourier transforms of

(a) L(ω) = 2
sin {3(ω − 2π)}

(ω − 2π)
(b) M(ω) =

eiω

1 + iω

Your solution

HELM (2008):
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Answer
(a) Using the frequency shift property with ω0 = 2π

l(t) = F−1{L(ω)} = p3(t)e
i2πt

(b) Using the time shift property with t0 = −1

m(t) = e−(t+1)u(t + 1)

t

m(t)

−1

4. Further properties of the Fourier transform
We state these properties without proof. As usual F (ω) denotes the Fourier transform of f(t).

(a) Time differentiation property:

F{f ′(t)} = iωF (ω)

(Differentiating a function is said to amplify the higher frequency components because of
the additional multiplying factor ω.)

(b) Frequency differentiation property:

F{tf(t)} = i
dF

dω
or F{(−it)f(t)} =

dF

dω

Note the symmetry between properties (a) and (b).

(c) Duality property:

If F{f(t)} = F (ω) then F{F (t)} = 2πf(−ω).

Informally, the duality property states that we can, apart from the 2π factor, interchange the time
and frequency domains provided we put −ω rather than ω in the second term, this corresponding to
a reflection in the vertical axis. If f(t) is even this latter is irrelevant.

For example, we know that if f(t) = p1(t) =

{
1 −1 < t < 1
0 otherwise

, then F (ω) = 2
sin ω

ω
.

Then, by the duality property, since p1(ω) is even, F{2sin t

t
} = 2πp1(−ω) = 2πp1(ω).
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Graphically:

t

F

P1(ω)

ω

P1(t) 2πp1(ω)

2π

−1 1 ω

F

p
1(t)

t −1 1

1

Figure 6

Task

Recalling the Fourier transform pair

f(t) =

{
e−2t t > 0
e2t t < 0

F (ω) =
4

4 + ω2
,

obtain the Fourier transforms of

(a) g(t) =
1

4 + t2
(b) h(t) =

1

4 + t2
cos 2t.

(a) Use the linearity and duality properties:

Your solution
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Answer

We have F{f(t)} ≡ F{e−2|t|} =
4

4 + ω2
. ∴ F{1

4
e−2|t|} =

1

4 + ω2
(by linearity)

∴ F{ 1

4 + t2
} = 2π

1

4
e−2|−ω| =

π

2
e−2|ω| = G(ω) (by duality).

t

F

ω

ω

F
t

f(t) F (ω)

g(t) G(ω)

1

1
4

π
2

1

(b) Use the modulation property based on the frequency shift property:

Your solution

Answer
We have h(t) = g(t) cos 2t. ∴ F{g(t) cos ω0t} = 1

2
(G(ω − ω0) + G(ω + ω0)),

so with ω0 = 2 F{h(t)} =
π

4

{
e−2|ω−2| + e−2|ω+2|} = H(ω)

H(ω)

−2 2 ω
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Exercises

1. Using the superposition and time delay theorems and the known result for the transform of the
rectangular pulse p(t), obtain the Fourier transforms of each of the signals shown.

−1−2 0 1 2

xa(t)
(a)

t
−1−2 0 1 2

xb (t)
(b)

t

−1−2 0 1 2

xc(t)

(c)

t
31 2

xd(t)

(d)

t

11

1 1

2 2

−1

2. Obtain the Fourier transform of the signal

f(t) = e−tu(t) + e−2tu(t)

where u(t) denotes the unit step function.

3. Use the time-shift property to obtain the Fourier transform of

f(t) =


1 1 ≤ t ≤ 3

0 otherwise

Verify your result using the definition of the Fourier transform.

4. Find the inverse Fourier transforms of

(a) F (ω) = 20
sin(5ω)

5ω
e−3iω

(b) F (ω) =
8

ω
sin 3ω eiω

(c) F (ω) =
eiω

1− iω

5. If f(t) is a signal with transform F (ω) obtain the Fourier transform of f(t) cos(ω0t) cos(ω0t).
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Answer

1. Xa(ω) =
4

ω
sin(

ω

2
) cos(

3ω

2
)

Xb(ω) =
−4i

ω
sin(

ω

2
) sin(

3ω

2
)

Xc(ω) =
2

ω
[sin(2ω) + sin(ω)]

Xd(ω) =
2

ω

(
sin(

3ω

2
) + sin(

ω

2

)
e−3iω/2

2. F (ω) =
3 + 2iω

2− ω2 + 3iω
(using the superposition property)

3. F (ω) = 2
sin ω

ω
e−2iω

4. (a) f(t) =

{
2 −2 < t < 8
0 otherwise

(b) f(t) =

{
4 −4 < t < 2
0 otherwise

(c) f(t) =

{
et+1 t < −1
0 otherwise

5.
1

2
F (ω) +

1

4
[F (ω + 2ω0) + F (ω − 2ω0)]
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Some Special Fourier
Transform Pairs

�
�

�
�24.3

Introduction
In this final Section on Fourier transforms we shall study briefly a number of topics such as Parseval’s
theorem and the relationship between Fourier transform and Laplace transforms. In particular we
shall obtain, intuitively rather than rigorously, various Fourier transforms of functions such as the unit
step function which actually violate the basic conditions which guarantee the existence of Fourier
transforms!

�

�

�

�
Prerequisites

Before starting this Section you should . . .

• be aware of the definitions and simple
properties of the Fourier transform and
inverse Fourier transform.�

�

�

�
Learning Outcomes

On completion you should be able to . . .

• use the unit impulse function (the Dirac delta
function) to obtain various Fourier transforms
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1. Parseval’s theorem
Recall from 23.2 on Fourier series that for a periodic signal fT (t) with complex Fourier coeffi-
cients cn(n = 0,±1,±2, . . .) Parseval’s theorem holds:

1

T

∫ +T
2

−T
2

f 2
T (t)dt =

∞∑
n=−∞

|cn|2,

where the left-hand side is the mean square value of the function (signal) over one period.

For a non-periodic real signal f(t) with Fourier transform F (ω) the corresponding result is∫ ∞

−∞
f 2(t)dt =

1

2π

∫ ∞

−∞
|F (ω)|2dω.

This result is particularly significant in filter theory. For reasons that we do not have space to go
into, the left-hand side integral is often referred to as the total energy of the signal. The integrand
on the right-hand side

1

2π
|F (ω)|2

is then referred to as the energy density (because it is the frequency domain quantity that has to
be integrated to obtain the total energy).

Task

Verify Parseval’s theorem using the one-sided exponential function

f(t) = e−tu(t).

Firstly evaluate the integral on the left-hand side:

Your solution

Answer∫ ∞

−∞
f 2(t)dt =

∫ ∞

0

e−2tdt =

[
e−2t

−2

]∞
0

=
1

2
.

Now obtain the Fourier transform F (ω) and evaluate the right-hand side integral:

Your solution
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Answer

F (ω) = F{e−tu(t)} =
1

1 + iω
,

so

|F (ω)|2 =
1

(1 + iω)
.

1

(1− iω)
=

1

1 + ω2
.

Then

1

2π

∫ ∞

−∞
|F (ω)|2dω =

1

π

∫ ∞

0

|F (ω)|2dω

=
1

π

∫ ∞

0

1

1 + ω2
dω =

1

π

[
tan−1 ω

]∞
0

=
1

π
× π

2
=

1

2
.

Since both integrals give the same value, Parseval’s theorem is verified for this case.

2. Existence of Fourier transforms
Formally, sufficient conditions for the Fourier transform of a function f(t) to exist are

(a)
∫∞
−∞ |f(t)|2dt is finite

(b) f(t) has a finite number of maxima and minima in any finite interval

(c) f(t) has a finite number of discontinuities.

Like the equivalent conditions for the existence of Fourier series these conditions are known as
Dirichlet conditions.

If the above conditions hold then f(t) has a unique Fourier transform. However certain functions,
such as the unit step function, which violate one or more of the Dirichlet conditions still have Fourier
transforms in a more generalized sense as we shall see shortly.

3. Fourier transform and Laplace transforms
Suppose f(t) = 0 for t < 0. Then the Fourier transform of f(t) becomes

F{f(t)} =

∫ ∞

0

f(t)e−iωtdt. (1)

As you may recall from earlier units, the Laplace transform of f(t) is

L{f(t)} =

∫ ∞

0

f(t)e−stdt. (2)

Comparison of (1) and (2) suggests that for such one-sided functions, the Fourier transform of f(t)
can be obtained by simply replacing s by iω in the Laplace transform.
An obvious example where this can be done is the function

f(t) = e−αtu(t).
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In this case L{f(t)} =
1

α + s
= F (s) and, as we have seen earlier,

F{f(t)} =
1

α + iω
= F (iω).

However, care must be taken with such substitutions. We must be sure that the conditions for the
existence of the Fourier transform are met. Thus, for the unit step function,

L{u(t)} =
1

s
,

whereas, F{u(t)} 6= 1

iω
. (We shall see that F{u(t)} does actually exist but is not equal to

1

iω
.)

We should also point out that some of the properties we have discussed for Fourier transforms are
similar to those of the Laplace transforms e.g. the time-shift properties:

Fourier: F{f(t− t0)} = e−iωt0F (ω) Laplace: L{f(t− t0)} = e−st0F (s).

4. Some special Fourier transform pairs
As mentioned in the previous subsection it is possible to obtain Fourier transforms for some important
functions that violate the Dirichlet conditions. To discuss this situation we must introduce the unit
impulse function, also known as the Dirac delta function. We shall study this topic in an inituitive,
rather than rigorous, fashion.

Recall that a symmetrical rectangular pulse

pa(t) =

{
1 −a < t < a
0 otherwise

has a Fourier transform

Pa(ω) =
2

ω
sin ωa.

If we consider a pulse whose height is
1

2a
rather than 1 (so that the pulse encloses unit area), then

we have, by the linearity property of Fourier transforms,

F
{

1

2a
pa(t)

}
=

sin ωa

ωa
.

As the value of a becomes smaller, the rectangular pulse becomes narrower and taller but still has
unit area.

2

1

1
2

a = 1
4

a = 1
2

a = 1

−1 − 1
2 − 1

4
1
2

1
4

1 t

Figure 7
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We define the unit impulse function δ(t) as

δ(t) = lim
a→0

1

2a
pa(t)

and show it graphically as follows:

δ(t)

t = 0 t

Figure 8

Then,

F{δ(t)} = F
{

lim
a→0

1

2a
pa(t)

}
= lim

a→0
F

{
1

2a
pa(t)

}
= lim

a→0

sin ωa

ωa

= 1.

Here we have assumed that interchanging the order of taking the Fourier transform with the limit
operation is valid.

Now consider a shifted unit impulse δ(t− t0):

t = 0 t

δ(t − t0)

t0

Figure 9

We have, by the time shift property

F{δ(t− t0)} = e−iωt0(1) = e−iωt0 .

These results are summarized in the following Key Point:
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Key Point 4

The Fourier transform of a Unit Impulse

F{δ(t− t0)} = e−iωt0 .

If t0 = 0 then F{δ(t)} = 1.

Task

Apply the duality property to the result

F{δ(t)} = 1.

(From the way we have introduced the unit impluse function it must clearly be
treated as an even function.)

Your solution

Answer
We have F{δ(t)} = 1. Therefore by the duality property

F{1} = 2πδ(−ω) = 2πδ(ω).

We see that the signal

f(t) = 1, −∞ < t < ∞

which is infinitely wide, has Fourier transform F (ω) = 2πδ(ω) which is infinitesimally narrow. This
reciprocal effect is characteristic of Fourier transforms.

f(t)

1

t

F (ω)

2πδ(ω)

ω

This result is intuitively plausible since a constant signal would be expected to have a frequency
representation which had only a component at zero frequency (ω = 0).
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Task

Use the result F{1} = 2πδ(ω) and the frequency shift property to obtain

F{eiω0t}.

Your solution

Answer
F{eiω0t} = F{eiω0tf(t)} where f(t) = 1, −∞ < t < ∞.

But F{f(t)} = 2πδ(ω), therefore, by the frequency shift property F{eiω0t} = 2πδ(ω − ω0).

ω

2πδ(ω − ω0)

ω0

F{eiω0t}

Task

Obtain the Fourier transform of a pure cosine wave

f(t) = cos ω0t −∞ < t < ∞

by writing f(t) in terms of complex exponentials and using the result of the previous
Task.

Your solution
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Answer
We have f(t) = cos ω0t = 1

2

{
eiω0t + e−iω0t

}
so

F{cos ω0t} =
1

2
F{eiω0t}+

1

2
F{e−iω0t} = πδ(ω − ω0) + πδ(ω + ω0)

ωω0

F (ω)

−ω0

Note that because

∫ ∞

−∞
| cos ω0t| dt diverges, one of the Dirichlet conditions is violated. Nevertheless,

as we can see via the use of the unit impulse functions, the Fourier transform of cos ω0t exists.

By similar reasoning we can readily show

F{sin ω0t} =
π

i
δ(ω − ω0)−

π

i
δ(ω + ω0).

Note that the usual results for Fourier transforms of even and odd functions still hold.

5. Fourier transform of the unit step function
We have already pointed out that although

L{u(t)} =
1

s

we cannot simply replace s by iω to obtain the Fourier transform of the unit step.
We proceed via the Fourier transform of the signum function sgn(t) which is defined as

sgn t =

{
1 t > 0

−1 t < 0

1

−1

t

sgn(t)

Figure 10

We obtain F{sgn(t)} as follows.
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Consider the odd two-sided exponential function fα(t) defined as

fα(t) =

{
e−αt t > 0
−eαt t < 0

,

where α > 0:

t

fα(t)

1

−1

Figure 11

By slightly adapting our earlier calculation for the even two-sided exponential function we find

F{fα(t)} = − 1

(α− iω)
+

1

(α + iω)

=
−(α + iω) + (α− iω)

α2 + ω2

= − 2iω

α2 + ω2
.

The parameter α controls how rapidly the exponential function varies:

t

fα(t)

1

−1

α1

α2

α3

α1 > α2 > α3

Figure 12

As we let α → 0 the exponential function resembles more and more closely the signum function.
This suggests that

F{sgn(t)} = lim
α→0

F{fα(t)}

= lim
α→0

(
− 2iω

α2 + ω2

)
= −2i

ω
=

2

iω
.

HELM (2008):
Section 24.3: Some Special Fourier Transform Pairs

35



Task

Write the unit step function in terms of the signum function and hence obtain
F{u(t)}.

First express u(t) in terms of sgn(t):

Your solution

Answer
From the graphs

1

−1

u(t)

1

t t

sgn(t)

the step function can be obtained by adding 1 to the signum function for all t and then dividing the
resulting function by 2 i.e.

u(t) =
1

2
(1 + sgn(t)).

Now, using the linearity property of Fourier transforms and previously obtained Fourier transforms,
find F{u(t)} :

Your solution
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Answer
We have, using linearity,

F{u(t)} =
1

2
F{1}+

1

2
F{sgn(t)} =

1

2
2πδ(ω) +

1

2

2

iω
= πδ(ω) +

1

iω

Thus, the Fourier transform of the unit step function contains the additional impulse term πδ(ω)

as well as the odd term
1

iω
.

Exercises

1. Use Parserval’s theorem and the Fourier transform of a ‘two-sided’ exponential function to
show that∫ ∞

−∞

dω

(a2 + ω2)2
=

π

2|a|3

2. Using F{sgn(t)} =
2

iω
find the Fourier transforms of (a) f1(t) =

1

t
(b) f2(t) = |t|

Hence obtain the transforms of (c) f3(t) = − 1

t2
(d) f4(t) =

2

t3

3. Show that

F{sin ω0t} = iπ[δ(ω + ω0)− δ(ω − ω0)]

Verify your result using inverse Fourier transform properties.

Answers

2 (a) F{1

t
} = −πi sgn(ω) (by the duality property)

(b) F{|t|} = − 2

ω2

(c) F{− 1

t2
} = πω sgn(ω) =

{
πω, ω > 0
−πω, ω < 0

(d) F{ 1

t3
} =

iπω2

2
sgn(ω)

(Using time differentiation property in (b), (c) and (d).)
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